Механический состав почвы и методы его определения
Механический состав почвы определяется по соотношению в пробе твердых частиц глины и песка. В зависимости от данного соотношения выделяют песчаные, супесчаные, глинистые, суглинистые и торфяные почвы. Следующий, не менее важный, параметр для садоводов — структурный состав, определяемый по форме и размеру комочков почвы. Обо всем этом и о методах определения изложено в данном обзоре.
Механический состав почвы
Рассмотрим основные типы почв по механическому составу:
Тип | Содержание глины (частицы менее 0,01 мм) % | Содержание песка (частицы более 0,01 мм) % | Характеристика |
Рыхлые пески | 0 — 5 | 100 — 95 | Мелкозернистые, среднезернистые, гравийно-хрящеватые |
Связные пески | 5 — 10 | 95 — 90 | Пылеватые, мелкозернистые, среднезернистые, гравийно-хрящеватые |
Рыхлые супеси | 10 — 15 | 90 — 85 | Пылеватые, пылевато-песчанистые, песчанистые, гравийно-хрящеватые |
Связные супеси | 15 — 20 | 85 — 80 | |
Легкие суглинки | 20 — 30 | 80 — 70 | Пылеватые, пылевато-песчанистые, песчанистые, пылевато-илистые |
Средние суглинки | 30 — 40 | 70 — 60 | |
Тяжелые суглинки | 40 — 50 | 60 — 50 | |
Легкие глины | 50 — 65 | 50 — 35 | Иловатые, пылеватые, песчанистые |
Средние глины | 65 — 80 | 35 — 20 | |
Тяжелые глины | более 80 | менее 20 |
Песчаные и супесчаные почвы
Такие почвы легко обрабатывать, поэтому их называют легкими почвами. Но, несмотря на это, имеется ряд существенных нюансов:
- Песчаные и супесчаные почвы хорошо пропускают влагу. В то же время они и с легкостью ее отдают.
- В данных почвах хороший воздушный и тепловой режим. Полезная органика в такой среде быстро разлагается, но питательные продукты распада вымываются из верхнего слоя не успев поступить к корням растений.
- Быстрый прогрев и охлаждение могу способствовать резким перепадам температуры в грунте.
Песчаным почвам требуются частые поливы и подкормки.
Дополнительные мероприятия по улучшению песчаной почвы могут включать:
- Снятие 400 – 500 мм верхнего слоя.
- Последующую укладку глины (или дерновой глинистой почвы) толщиной 100 – 150 мм.
- Добавление к выбранному песку 1 – 2 части глины, торфа, перегноя, навоза.
- Тщательное перемешивание компонентов и обратная засыпка поверх глиняной подушки.
Суглинистые почвы
Наиболее плотные суглинистые почвы — это оптимальная основа для выращивания всех культур. Они прогреваются и набирают влагу медленнее, чем песчаные, но, в то же время, дольше удерживают нужный водно-воздушный режим. В таком грунте хорошо распределяются корни и обеспечивается равномерное потребление растениями питательных элементов.
При избытке влаги в суглинках нарушается снабжение корней кислородом.
Легкие и средние суглинистые почвы считаются самыми плодородными. В целях профилактики, для улучшения структуры нужно вносить достаточное количество питательных и разрыхляющих землю веществ (песок и торф). Почвы, имеющие кислую реакцию, раз в 3 — 4 года необходимо известковать.
Глинистые почвы
Наименее плодородными являются тяжелые глинистые почвы — кислые, сырые и плохо прогреваемые. Такая почва без улучшения малопригодна для выращивания большинства овощных культур. Это обусловлено тем, что несмотря на достаточное количество питательных элементов, приток воздуха вглубь ограничен и имеется предрасположенность к накоплению вредных веществ.
Обрабатывать такие почвы непросто. К мероприятиям по улучшению можно отнести:
- Внесение на 1 м² 2–3 ведер соломистого полуразложившегося навоза, компоста, торфа, крупнозернистого песка, дерновой земли, листьев, опилок, стружек или измельченного хвороста от обрезки деревьев и виноградной лозы. Дополнительно в каждое ведро нужно добавлять 10–15 г азотных удобрений для разложения клетчатки.
- Глубокую перекопку участка и контроль за тем, чтобы грунт не пересох. Превратившись в камнеподобную массу, он может не раскиснуть в течение лета.
Структурный состав почвы
Структура плодородной почвы обязательно должна содержать агрегаты (комочки). Их оптимальное количество и размер — 80% и 7 — 10 мм соответственно.
Мелкокомковатый, структурный состав (от 2,5 до 10 мм) характерен наиболее плодородному грунту. В каждом комочке структурной почвы частицы песка и глины прочно склеены перегноем. Такие комочки не размываются водой, а промежутки между ними оптимально заполняются воздухом. В мелкокомковатой почве хорошо разрастаются корни растений, живут почвенные бактерии и грибы.
Почвы, в которых мелкие пылевидные частицы прилегают друг к другу, называются бесструктурными. Являясь малоплодородными, они практически не содержат воздуха, и талая дождевая вода, смачивая лишь поверхность, не проникает вглубь. После дождя вода быстро испаряется и на поверхности почвы образуется характерная корка с трещинами.
Способ определения механического состава почвы
Для определения механического состава в домашних условиях необходимо (смотрите таблицу ниже):
Механический состав почвы
По механическому составу почвы делятся на песчаные, супесчаные, суглинистые и глинистые. Это деление почв определяется соотношением в почве песка, пыли и ила. К песку относят частицы почвы диаметром от 0,05 до 3 мм, к тонкому или пылеватому песку (крупная пыль) — величиной 0,01—0,05 мм. Частицы диаметром 0,001—0,01 мм называются пылью, а меньше 0,001 — илом. Частицы размером меньше 0,01 мм объединяются в группу физической глины. При содержании в почве физической глины меньше 10% почву называют песчаной, а от 10 до 20% супесчаной. Суглинистые почвы содержат от 20 до 50% физической глины, глинистые — свыше 50%.
Для полевого определения механического состава почвы можно использовать метод Качинского. При этом кусочек почвы смачивают и разминают, чтобы она стала похожей на тесто. Затем, размяв между ладонями, ее скатывают в шнур толщиной около 3 мм и делают из него кольцо диаметром 3 см. Если взята песчаная почва, то шнур скатать не удается, из супесчаной же шнур формируется неустойчиво. Если шнур скатывается, но распадается на дольки, то почва легкосуглинистая. На среднесуглинистой шнур образуется, но при свертывании в колечко распадается. Если же шнур не разрывается, а только трескается, то почва тяжелосуглинистая. На глинистых почвах шнур свертывается в колечко, не трескаясь.
В зависимости от механического состава почвы изменяются ее свойства, и в частности ее водопроницаемость. Низкая водопроницаемость отмечается в почвах, содержащих мало песка и много физической глины. К таким почвам относятся глинистые и тяжелосуглинистые. С увеличением в почве количества песка водопроницаемость ее повышается.
Это зависит от величины почвенных частиц. Чем они крупнее, тем больше промежутки между ними. Между частичками песка много пустот, через которые легко проходит вода. Поэтому при наличии в почве песчаных частиц она лучше пропускает влагу. В глинистой почве пустоты, «отверстия» заполнены мелкими илистыми частицами, поэтому вода в нее проникает чаще всего по ходам корней, трещинам и т. д.
Влагоемкость почвы, т. е. способность поглощать и удерживать влагу, также изменяется в зависимости от механического состава. На тяжелых глинистых и суглинистых почвах удерживается большое количество воды, на супесчаных — очень мало.
Наибольшая влагоемкость наблюдается на почвах с большим количеством мелких частиц. Водоудерживающая сила почвы тем сильнее, чем больше поверхность частичек. На песчаных почвах поверхность невысока и вода задерживается мало, на глинистых же наоборот.
Сходно ведут себя почвы и в отношении питательных веществ. Способность почвы удерживать питательные вещества вызывается поглотительной способностью ее. Чем мельче частицы, составляющие почву, и больше их поверхность, на которой идет закрепление вещества, тем большей поглотительной способностью они обладают.
В легкие почвы хорошо проникает не только вода, но и воздух. В связи с этим они хорошо аэрируются и растения не страдают от недостатка кислорода для корневой системы. На тяжелых же почвах чаще можно встретиться с неблагоприятными условиями воздушного режима.
Перегной (гумус) образуется из продуктов жизнедеятельности микроорганизмов, разлагающих мертвые остатки растений, животных. Это весьма сложный процесс, в котором, наряду с разложением органического вещества, имеет место синтетическая деятельность почвенных микроорганизмов.
В почве мы всегда можем найти остатки полуразложившихся корней, соломы, навоза, веточек, листьев. Однако это не гумус, так как в нем уже нельзя узнать частей, из которых он образовался.
Гумус — продукт деятельности почвенных микроорганизмов — он представляет собой стойкое органическое вещество и состоит из коллоидных частиц, перемешанных с минеральной частью почвы. В дерново-подзолистой почве перегноя сравнительно немного (1—3%), однако он играет в почвенном плодородии исключительно важную роль. Гумус служит важным показателем плодородия почвы. Он содержит все необходимые питательные элементы, которые после разложения становятся доступными растениям. Кроме того, после разложения гумуса выделяется углекислота, которая повышает доступность почвенных соединений и улучшает углеродное питание.
Перегной улучшает химические и физические свойства почвы. Повышается влагоемкость почвы, ее поглотительная способность. Особенно велико влияние гумуса на структуру почвы. Он склеивает, цементирует отдельные почвенные частички в комочки. На тяжелых почвах повышение структуры увеличивает водопроницаемость и аэрацию почвы, на легких— поглотительную способность и влагоемкость.
Увеличение в почве перегноя должно быть постоянной заботой садовода. Накоплению в почве перегноя способствует внесение органических удобрений. Хорошим примером этому являются староогородные почвы, где количество гумуса достигает 5—6%.
Механический, химический, гранулометический и минеральный состав почвы. Что входит в состав почвы?
Почва – это один из наиболее важных элементов биосферы, который определяет условия обитания человека. Это также неотъемлемое звено в кругообороте веществ в природе. Почва – природная лаборатория, в которой происходит синтез и разрушение органовеществ, жизнь бактерий и различных простейших животных, развитие растительности и образование полезных ископаемых. Состав почвы влияет на потребляемые человеком продукты питания растительного и животного происхождения, а также питьевую воду. Почва – поверхностная часть минерально-органической оболочки Земли – литосферы.
Что входит в состав почвы
Можно выделить четыре основных компонента в составе почвы:
– минеральная основа, которая составляет основную часть от всего объема (50-60%);
– органические вещества составляют наименьшую часть (всего 10% от общего объема);
Почва обычно состоят из различного по размеру частиц, начиная от мелкозернистого грунта и коллоидных частиц, заканчивая крупными валунами.
Механический состав почвы
В зависимости от соотношения содержащихся в почве песка, ила и пыли различают почвы суглинистые, глинистые, песчаные и супесчаные. Песком принято называть почвы с диаметром частиц от 0,05 до 3 мм. Крупная пыль, или тонкий (пылеватый) песок – это почва с диаметром зерен от 0,01 до 0,05 мм. Пыль состоит из частиц размером 0,001-0,01 мм, ил – менее 0,001 мм. Если механический состав почвы содержит частицы размером до 0,01 мм, то их объединяют в подгруппу глины физической. В песчаной почве содержится менее 10% физической глины, в супесчаной – от 10% до 20%. в суглинистой – 20-50%, в суглинистой – более 50%. Гранулометрический состав почвы – это важный параметр, влияющий на качество грунта, в том числе и его плодородие.
Метод Качинского для определения состава почвы
Чтобы определить гранулометрический состав почвы, т.е. содержание в грунте тех или иных механических элементов, можно воспользоваться методом Качинского, который заключается в следующем. небольшой комочек почвы необходимо смочить водой и размять, пока она не станет похожей на тесто. Размяв ее в ладонях, нужно скатать из нее шнур толщиной примерно в 3 мм. Из полученного «шнура» делается кольцо (3 см в диаметре). Из песчаной почвы скатать шнур не получается совершенно. Шнур из супесчаной почвы неустойчив. Легкосуглинистая почва скатывается, однако распадается на дольки. Из среднесуглинистой удается скатать шнур, но не получается свернуть его в кольцо. При использовании тяжелосуглинистой удается замкнуть кольцо, которое трескается. А глинистая почва не растрескивается при замыкании шнура в кольцо.
Влияние механического состава на свойства почвы
В зависимости от того, какой состав почвы, изменяются и ее свойства, к примеру, водопроницаемость. Наиболее низкая проницаемость воды отмечается в грунте, содержащем много физической глины и небольшое количество песка (тяжелосуглинистые и глинистые). Чем больше в почве песка, тем выше ее водопроницаемость (между сравнительно крупными частичками песка влага с легкостью проходит).
Еще одно свойство грунта – влагоемкость (способность удерживать воду), на которую также в значительной мере влияет состав почвы. Тяжелые глинистые и суглинистые земли удерживают большое количество воды, а супесчаные – совсем незначительное. Чем больше мелких частиц, тем выше влагоемкость.
Способность грунта задерживать питательные вещества называется поглотительной. На нее также влияет состав почвы. Как правило, более мелкие частицы обладают наивысшей поглощающей способностью. В таком грунте отлично закрепляются питательные вещества, определяющие минеральный состав почвы. Легкий грунт также хорошо пропускают воздух, что благоприятно сказывается на росте и развитии растений.
Влияние гранулометрического состава на развитие растений
Продуктивность растений во многом зависит от механического состава грунта, влияющего на его свойства. Наиболее приемлемый гранулометрический состав зависит от технологии возделывания почвы и ее условий влагообеспеченности. Так, например, земля с низким запасом влаги (пески и супеси) приводит к значительному понижению урожайности почвы. Если же грунт хорошо увлажняется, то и аэрация происходит более качественно, что благотворно сказывается на росте и развитии растений. Возделывание бедных почв с внесением в них питательных веществ и при условии избыточного полива приводит к повышению урожайности.
Содержание химических веществ
Химический состав почвы определяет количество содержащихся в ней химических элементов. Наибольший объем составляет окись кремния. Затем – окись алюминия, железо, калий и натрий. Окись кальция и магния в значительном количестве содержится в карбонатных почвах, в засоленных – хлористый натрий и калий.
В наименьшем количестве в земле содержатся микроэлементы: марганец, йод, кобальт, цинк, фтор, никель, бром, барий, литий и другие. Образуются неорганические соединения благодаря остаткам материнской почвообразующей породы, останкам животных и растений, разлагающимся под действием микроорганизмов. Химический состав почвы (недостаток или переизбыток макро- и микроэлементов в почвенном покрове) через цепь питания может оказывать огромное значение на жизнь и здоровье человека и животных.
Перегной, или гумус
Почвообразование на планете началось еще с тех времен, когда на ней появились первые живые существа, останки которых превращаются в питательную среду – гумус, или перегной. Он непосредственно влияет на свойства почвы, в частности, на ее плодородие. Перегной придает земле черный, сероватый или коричневый цвет. В одних типах грунта гумуса содержится больше, в других – практически не имеется.
Перегной образуется из останков микроорганизмов, животных и растений после их глубоко разложения. Останки истлевают под воздействием бактерий и грибков, утрачивают некоторые свои вещества, теряя при этом внешний вид, темнея и бурея.
Перегной состоит из разнообразных частей, наиболее значимая из которых – гуминовые вещества, окрашивающие землю в черный цвет. Эти вещества плохо растворимы в воде. Почва, богатая гуминовыми веществами, чрезвычайно способствует повышению урожайности растений.
Также в грунте содержится светлоокрашенный (кислый) гумус, представленный апокреновой и креновой кислотами. Они легко растворимы в воде, поэтому быстро вымываются и практически не задерживаются в почве. На состав перегноя влияет климат, растения, бактерии, животные и грибы, которые распространены в той или иной зоне планеты.
Значение гумуса (перегноя)
Вместе с водой растения в процессе своего развития берут из грунта все необходимые для жизни питательные вещества: фосфор, калий, азот, серу, железо, кальций, медь, марганец, кислород, кремний, водород, бор, алюминий. Все эти микро- и макроэлементы необходимы для нормального развития растений. Одни вещества содержатся в достаточном количестве, а другие приходится вносить искусственным способом. Источник всех питательный веществ – это перегной.
Растения в процессе своего роста и развития забирают из земли питательные вещества, которые после отмирания и полного разложения растения возвращаются обратно в почву и снова участвуют в процессе питания. Также при разложении растительного покрова образуются различные кислоты, например, угольная. Они способствуют быстрому растворению минеральных солей, которые также участвуют в процессе развития растений.
Роль гумуса в процессе структурирования почвы
Перегной, помимо своей питательности, имеет и другое важное значение – он влияет на структурный состав почвы. Схема образования почвенной структуры состоит в следующем. Пожалуй, каждый видел, как земля распадается на комочки разной формы и величины. Эти кусочки называют структурными отдельностями. Внешне они могут напоминать зернышки, крупинки, пылинки, грудки. В зависимости от содержания структурных отдельностей выделяют следующие типы почвенных структур: пылеватая, комковатая, ореховатая и другая. Почва тем рыхлее, чем пористее и прочнее ее кусочки, поскольку в них содержится меньшее количество пыли. Если же грунт рыхлый, то в него проще проникает воздух и вода, которые жизненно необходимы растениям, грибам и бактериям, а также некоторым животным, обитающим в земле.
Почвы, богатые перегноем, состоят из пористых и прочных зернышек. Они не размокают в воде, оказывают хорошее сопротивление распылению при пахоте. Такая рыхлая земля отлично пропускает воду и воздух. Обедненные гумусом почвы легко превращаются в пыль. Такой грунт покрывается коркой после дождя или полива, что может привести к болезни или даже гибели растений.
Изменение состава почвы с течением времени
Состав, а, следственно, и свойства почвенного покрова, не остаются неизменными. Со временем происходит их размывание водой, дробление, образование одних минералов и разрушение других. Грибы, растения и животные, бактерии появляются, живут и отмирают, изменяя химический состав земли. Воздух и вода, контактирующие с почвой, также изменяют свой состав изо дня в день. Ну и, конечно же, на состав почвенного покрова постоянно влияет человек. В процессе его обработки он вносит те или удобрения, применяет различные средства окультивирования, что влияет на свойства грунта.
Механический состав почвы и способы его изменения
Главная / — Следующая статья Почвы и удобрения / Механический состав почвы и способы его изменения
В первую очередь создание достаточного по мощности корнеобитаемого слоя направлено на улучшение физических свойств почвы. Это достигается прежде всего созданием благоприятного механического состава.
По механическому составу почвы делятся на лёгкие (песчаные, супесчаные), суглинистые и тяжёлые (глинистые). От механического состава зависят плотность почвы, её влагоёмкость, водопроницаемость, воздушный и тепловой режим. Большое значение имеет механический состав в формировании пищевого режима почв — от него зависят дозы и сроки внесения удобрений, извести. Поэтому понятно, насколько важно знать механический состав почвы вашего участка для проведения действенных мероприятий по её улучшению.
Почвы разного механического состава имеют свои достоинства и недостатки. Они требуют разных способов улучшения.
Тяжёлые глинистые почвы лучше обеспечены элементами питания, чем лёгкие. Вместе с тем эти почвы медленнее прогреваются весной, трудны в обработке, заплывают после дождей, на их поверхности при высыхании образуется корка — требуется их систематическое рыхление. Водный режим этих почв неблагоприятен для растений: атмосферные осадки и талые воды плохо просачиваются в нижние горизонты. Застой воды на поверхности приводит к образованию в почве газов (сероводорода, метана, аммиака), отравляющих растения. Из-за того что тяжёлые по механическому составу почвы содержат мало воздуха и много воды,
активность микроорганизмов низкая, разложение органического вещества идёт слабо, а значит, условия питания растений в них неудовлетворительные.
Поэтому создание корнеобитаемого слоя с благоприятными для растений свойствами на почвах тяжёлого механического состава необходимо проводить в первую очередь. Для этого существуют разные способы.
На почвах подзолистого типа (тяжёлого механического состава, без признаков переувлажнения) создание корнеобитаемого слоя под овощные, цветочные культуры должно проводиться глубокой перекопкой с одновременным внесением рыхлящих материалов (песка, опилок), органических и минеральных удобрений.
При глубокой перекопке почв подзолистого типа в корнеобитаемый слой попадает грунт из бесплодного подзолистого горизонта. В этом случае обязательно следует вносить органические удобрения (в дозе 5-6 кг/м2), известь, а также минеральные фосфорные и калийные удобрения. Иначе при углублении слоя (даже при том, что будет создан благоприятный механический состав) плодородие снизится. Такая перекопка будет малоэффективной или даже вредной.
Хороший результат можно получить, если внести в тяжёлые почвы песок. Делается это следующим образом. На почву положите слой песка толщиной 10-15 см, на него — слой органического удобрения (перепревшего навоза или созревшего компоста) толщиной 5 см. Оба слоя перекопайте с таким же по толщине (примерно на 2/3 штыка лопаты) слоем глинистой почвы.
Для разных культур, выращиваемых на садовых участках, требования к механическому составу почвы неодинаковы, поэтому количество песка тоже должно быть разное.
Пескование глинистых почв — трудоёмкий процесс, но, проведя его единожды, вы на много лет создадите благоприятные условия для растений.
Хорошее рыхлящее действие на тяжёлые почвы оказывают опилки. Их лучше вносить с осени — не более 5 вёдер на 10 м2. Не следует применять свежие опилки, в этом случае разлагающие их микроорганизмы будут использовать азот почвы, что приведёт к снижению её плодородия. Перед внесением опилки следует смочить раствором любого азотного удобрения. Растворите в ведре воды 220 г мочевины (или чуть меньше 300 г аммиачной селитры) и этим количеством раствора обработайте 3 ведра опилок.
Способ посадки плодовых и декоративных деревьев, кустарников определяется режимом влажности почвы.
Создание глубокого корнеобитаемого слоя необходимо также и на лёгких почвах. Без этого на них, как и на тяжёлых, нельзя получить хороших урожаев.
Лёгкие почвы быстро прогреваются весной, легко поддаются обработке, имеют хороший воздушный режим. Но при этом плохо удерживают воду. Урожай на них больше, чем на почвах другого типа, зависит от количества атмосферных осадков, выпадающих в период вегетации. Из-за того что они «водопроницаемы», растворимые питательные вещества при сильных дождях уходят с водой на большую глубину и могут быть потеряны для растений. Поэтому эти почвы бедны питательными веществами. Приёмы улучшения лёгких почв должны быть направлены в первую очередь на повышение их водоудерживающей способности. Для этого прибегают к «глинованию»: вносят 5-6 вёдер глины на 1 м2 и перекапывают на глубину корнеобитаемого слоя, добавляя органические, минеральные удобрения и известь.
Лёгкие почвы можно улучшить, искусственно создав плодородный слой. Данная работа трудоёмка, но результат получается хороший. Этот способ применяется на небольшой площади участка. Для этого следует на песчаную почву насыпать слой глины (5-6 вёдер на 1 м2), тщательно его разровнять. Затем положить на него слой плодородной земли не менее 20-25 см, чтобы при вскапывании не выворачивать песок и глину наружу. Слой глины будет препятствовать вымыванию питательных веществ из плодородного слоя и способствовать сохранению в нем влаги.
Заслуживает внимания внесение в лёгкие почвы прудового ила (сапропеля). Сапропель имеет тяжёлый механический состав, и его внесение улучшает водно-физические свойства лёгких почв, повышает их влагоёмкость, поглотительную способность. Сапропель обогащает почву питательными веществами, но надо иметь в виду, что вносить его следует только после проветривания и промораживания. Такая подготовка необходима для улучшения его структуры и перехода закисных соединений железа, содержащихся в нем и токсичных для растений, в окисные — нетоксичные.
Обогатить песчаные почвы питательными веществами и повысить их водоудерживающую способность можно внесением больших доз органических удобрений. Для этого больше всего подходят компосты и вызревший навоз. Средняя доза 5-10 кг/м2. Значительной водоудерживающей способностью обладает торф. Однако в чистом виде торф не имеет значительной ценности, кроме того, в нем могут содержаться токсичные для растений вещества. Поэтому торф лучше использовать в виде компостов, наиболее эффективны торфо-навозные компосты.
Посадку плодовых и декоративных деревьев, ягодных кустарников на лёгких почвах следует проводить так же, как и на тяжёлых, в посадочные ямы.
Создание корнеобитаемого слоя на переувлажнённых почвах требует больших затрат, чем на хорошо дренированных.
Избыточная влажность создаёт в почве недостаток кислорода, подавляет разложение органического вещества почвы и использование растениями удобрений, тем самым нарушает режим питания растений. В переувлажнённых почвах накапливаются вредные для растений вещества, такие как сероводород, аммиак, метан. Происходит загнивание и отмирание корней.
Если вы установили (по признакам, указанным в предыдущей главе), что почвы вашего участка переувлажнены, то первым шагом при их освоении должно быть устранение переувлажнения, улучшение водно-воздушного режима.
На садовых участках улучшить водный режим переувлажнённых почв, уменьшить вредное влияние избыточной влажности на растения можно особыми способами посадки растений — профилированием, устройством холмов, валов, гребней, гряд. Цель этих способов посадки растений — искусственным путём поднять уровень почвы, отдалив таким образом растения от переувлажнённых слоев.
Если переувлажнение почвы происходит из-за присутствия близкого залегания водоупорной глины, не пропускающей влагу, то этот слой можно разрушить, перекопав с песком и внеся органические удобрения или даже мелко порубленные ветки деревьев и кустарников. Рационально на переувлажнённых почвах выращивать овощи, цветы, землянику на насыпных грядах. Для этого следует грядки или рабатки оконтурить коробом из досок или другим материалом, насыпать на дно песок слоем около 5 см, перекопать почву с песком, а сверху насыпать слоем 25-30 см плодородный грунт.
Среди типов почв нашей зоны торфяные почвы по своим свойствам и химическому составу занимают особое место. Сформировавшиеся преимущественно из растений, они, в отличие от почв, возникших на минеральной основе, на 90% и более состоят из органических остатков. Природа торфяных почв определила своеобразие сочетания в них элементов минерального питания, температурного режима, влажности и других свойств.
Торфяные почвы в естественном состоянии вследствие переувлажнения, недостаточной обеспеченности воздухом и, нередко, высокой кислотности малопригодны для выращивания культурных растений. Для этих целей их можно использовать только после осушения. Однако и после осушения торфяные почвы сохраняют ряд неблагоприятных свойств и требуют проведения комплекса мелиоративных работ, направленных в первую очередь на улучшение их физических свойств и теплового режима.
Изменить в положительную сторону физические свойства торфяных почв можно путём внесения минеральных добавок. Создание минеральных корнеобитаемых горизонтов повышает теплопроводность торфяных почв, уменьшает перегрев почв, снижает контрасты температур, ускоряет созревание культур.
Существует несколько способов улучшения осушенных торфяных почв, которые могут быть применены на садовых участках. Они основаны на внесении песка в корнеобитаемый слой.
Один из таких способов — внесение песка на поверхность почвы (в дозе 30-60 кг/м2) и перекапывание его с торфом на глубину корнеобитаемого слоя.
Другой способ (так называемая покровная культура торфяных почв) был предложен в Саксонии немецким землевладельцем Римпау. Суть его заключается в следующем: на поверхность торфяной почвы насыпается слой песка толщиной 14-15 см и перемешивается с небольшим слоем торфа (2-4 см). Все остальные мероприятия — внесение органических и минеральных удобрений, извести — производятся только во вновь созданный горизонт.
Если слой торфяной почвы небольшой и он подстилается глиной или суглинком, то можно перемешать торф с подстилающей породой. Таким образом искусственно будет создана новая почва, обладающая достаточным плодородием.
Однако, если торф подстилается бесплодным кварцевым песком, окультуривать его сложно, нередко просто невозможно.
При песковании торфяных почв, с одной стороны, улучшаются их физические и тепловые свойства, а с другой — за счёт улучшения в них воздушного режима увеличивается скорость разложения торфа. Скорость его разложения после осушения под разными культурами составляет от 2 до 3 см/год. Процесс разложения торфа (или, как говорят, «сработки») называется деградацией. Этот процесс надо затормозить, иначе торфяная почва (особенно если мощность слоя небольшая) может полностью исчезнуть и на поверхности окажется бесплодная подстилающая порода.
Чтобы предотвратить разрушение торфа, необходимо в торфяные почвы вносить биологически активные (богатые азотом) органические удобрения (навоз, компосты на его основе, фекальные компосты, компосты с птичьим помётом и др.).
Торфяные почвы имеют специфический состав минеральных веществ. Торфяные почвы низинного типа потенциально богаты азотом, кальцием, железом, но бедны фосфором, калием и микроэлементами (особенно медью). Поэтому для обеспечения сбалансированного питания культурных растений необходимо систематическое внесение повышенных доз фосфорных и калийных удобрений, микроэлементов. Азотные удобрения на торфяных почвах применяют в первые годы на вновь осваиваемых участках.
Торфяные почвы, как правило, малопригодны для выращивания плодовых деревьев. Даже если устранить переувлажнение почвы, то опасность частых заморозков, летнего перегрева почвы будет лимитировать их рост.
Гранулометрический (механический) состав почв
Твёрдая фаза почвы и породы – гетерогенная, полидис- персная система, состоящая из минеральных, органоминеральных и органических частиц разного размера – от молекул до крупных механических элементов ила, пыли, песка и камней. Частицы почвы разного размера называют механическими элементами или гранулами.
Свойства механических элементов изменяются в зависимости от их размера. Близкие по размеру и свойствам частицы группируются во фракции.
Группировка частиц по размерам во фракции называется классификацией механических элементов (табл. 11).
Классификация механических элементов почвы
по Н.А. Качинскому, 1970)
Размер частиц, мм
Название механических элементов
Каменистая часть (почвенный скелет)
- 1-0,5
- 0,5-0,25
- 0,25-0,05
- 0,05-0,01
Песок крупный средний мелкий Пыль крупная
Физический песок. Более 0,01 мм
Физическая глина Менее 0,01 мм
Физический песок (частицы размером более 0,01 мм) и физическая глина (частицы размером менее 0,01 мм) в сумме представляют мелкозём. Отдельные фракции по-разному влияют на свойства почв и пород, что обусловлено их различным минералогическим и химическим составом, а также физическими и физико-химическими свойствами.
Камни (более 3 мм) представлены в основном обломками горных пород, обусловливают отрицательные свойства почв, затрудняющие использование сельскохозяйственной техники и орудий, ухудшают появление всходов и рост растений.
Каменистость учитывают и классифицируют в зависимости от количества частиц размером более 3 мм (табл. 12).
Классификация почв по каменистости (по Н. А. Качинскому, 1970)
Содержание частиц более 3 мм, % от массы почвы
Устанавливается по характеру скелетной части.
Почвы могут быть валунные, галечниковые, щебенчатые
На слабокаменистых почвах ускоряется износ рабочих органов орудий по обработке почв. Средне- и сильнокаменистые почвы нуждаются в мелиоративных работах по удалению камней.
Валунные почвы часто встречаются в северо-западных районах Нечерноземья, щебенчатые – в горных и предгорных районах.
Гравий (3-1 мм) состоит из обломков первичных минералов. Высокое содержание гравия в почвах придаёт им такие неблагоприятные свойства, как отсутствие водоподъёмной способности, низкая влагоёмкость и провальная водопроницаемость, что неблагоприятно для произрастания сельскохозяйственных культур.
Песчаная фракция (1-0,05 мм) состоит из обломков первичных минералов (кварца, полевых шпатов и др.) и обладает высокой водопроницаемостью, не набухает, не пластична, но обладает незначительной капиллярностью и влагоёмкостью и практически пригодна для возделывания сельскохозяйственных культур (подзолы, подзолистые, дерново-подзолистые, светло-серые лесные, аллювиальные почвы).
Пыль крупная и средняя (0,05-0,005 мм).
Пыль крупная (0,05-0,01 мм) по минералогическому составу и физическим свойствам близка к песчаной фракции (не пластична, слабо набухает, имеет невысокую вла- гоемкость).
В составе фракции средней пыли (0,01-0,005 мм) преобладает содержание слюд, которые придают ей повышенную пластичность и связность. Эта фракция лучше удерживает влагу, но её водопроницаемость слабая, она не способна к коагуляции, не участвует в структурообра- зовании и физико-химических процессах, протекающих в почве. Поэтому почвы, обогащённые фракциями крупной и средней пыли, легко распыляются, склонны к заплы- ванию и уплотнению, имеют слабую водопроницаемость (серые лесные и другие почвы).
Пыль мелкая (0,005-0,001 мм) состоит из первичных и вторичных минералов и обладает высокой дисперсностью, обусловливающей ряд свойств, характерных для более крупных фракций. Пыль мелкая способна к коагуляции и структурообразованию, обладает поглотительной способностью, имеет повышенное содержание гумусовых веществ. В свободном, не агрегированном состоянии обилие тонкой пыли придаёт почве также и неблагоприятные свойства: низкая водопроницаемость, большое количество недоступной влаги, высокие набухаемость и усадка, пластичность, трещиноватость, плотное сложение (чернозёмы, каштановые почвы, солонцы).
Ил (менее 0,001 мм) состоит в основном из высокодисперсных вторичных минералов, а также частично из первичных (кварц, ортоклаз, мусковит) и определяет в большей степени плодородие почвы. Илистая фракция определяет течение физико-химических процессов в почве, обладает большой поглотительной способностью, содержит много гумуса, элементы зольного и азотного питания растений (тёмно-серые лесные, чернозёмы, лугово-чернозёмные, каштановые).
Коллоиды (менее 0,0001 мм) играют основную роль в физико-химических (обменных) процессах почв, имеющих важное значение в почвенном плодородии. Их количество в почве изменяется от 0-1 до 30-40% к массе почвы. Физико-химические свойства почв определяются не только количеством коллоидов, но в большей степени их состоянием (коагулированное или некоагулированное). Состояние коллоидов в почве зависит от содержания в почвенном поглощающем комплексе щелочных металлов (особенно натрия). Если их много, то коллоидные вещества некоагу- лированы, что приводит к низкой агрегированности почв, обусловливая их плохую водопроницаемость, медленное капиллярное поднятие воды, высокие набухаемость и вязкость во влажном состоянии (солонцы). И наоборот, в почвах, почвенный поглощающий комплекс которых насыщен кальцием, коллоиды находятся в коагулированном состоянии, которое определяет хорошую агрегированность, водопроницаемость, низкую набухаемость и вязкость почв (чернозёмы, лугово-чернозёмные почвы).
Таким образом, с уменьшением размера механических элементов существенно изменяются их свойства. Довольно резкие изменения свойств механические элементы претерпевают на границе 0,01 мм и далее 0,05 и 0,001 мм. Это позволило разделить все механические элементы на две большие группы фракций: физический песок (частицы, диаметр которых более 0,01 мм) и физическая глина (частицы, диаметр которых менее 0,01 мм) – табл. 11.
Почвы и породы сложены из фракций механических элементов в различных количественных соотношениях. Относительное содержание в почве или породе фракций механических элементов называется механическим или гранулометрическим составом.
Почвы и породы по гранулометрическому составу можно объединить в несколько групп с характерными для них физическими, физико-химическими и химическими свойствами.
В основу классификации почв по гранулометрическому составу положено соотношение физического песка и физической глины. В зависимости от этого почва получает основное название по гранулометрическому составу: песчаная, супесчаная, суглинистая, глинистая (табл. 13).
Классификация почв по гранулометрическому составу
Содержание физической глины (частицы менее 0,01мм), %
Содержание физического песка (частицы более 0,01мм), %
Механический и химический состав почвы
Механический состав почвы
Механический состав почвы — это совокупность механических фракций. Фракции образуются из частиц сходного размера. Частицы или механические элементы образуются при выветривании камней и горных пород. Это долгий процесс, в результате, которого образуется рыхлая масса. Как правило, почва представляет собой смесь частиц разного размера, которые группируют по фракциям:
Фракции | Размер, мм |
Камни | >3 |
Гравий | 3-1 |
Песок крупный | 1-0,5 |
Песок средний | 0,5-0,25 |
Песок мелкий | 0,25-0,05 |
Пыль крупная | 0,05-0,01 |
Пыль средняя | 0,01-0,005 |
Пыль мелкая | 0,005-0,001 |
Ил грубый | 0,001-0,0005 |
Ил тонкий | 0,0005-0,0001 |
Коллоиды | 0,01 |
Нередко совокупность частиц мельче 0,01 мм называют физической глиной, а крупнее 0,01 мм — физическим песком. Соответственно и почвы, в которых преобладают те или иных фракции называют глинистыми или песчаными почвами. Классификация почв по механическому составу:
Краткое название почвы по механическому составу | Содержание физической глины (частиц 80 | >85 | >65 |
Химический состав почвы
Почва является самой верхней частью коры выветривания литосферы и поэтому в основном отражает ее химический состав. Но в то же время почва — это продукт воздействия на литосферу живых организмов, что отражается на ее химическом составе. Наиболее яркое отличие химического состава почвы от материнской почвообразующей породы заключается в содержании важнейших биогенных элементов углерода и азота. Содержание азота в почве возрастает в 20 раз, а азота в 10 раз по сравнению с горной породой. Поскольку основная часть почвенной массы (за исключением гумуса и органических остатков) представлена минеральными частицами, то химический состав почвы, в общем, определяется составом формирующих ее минералов. Так, наиболее высокое содержание кремния мы обнаруживаем в обогащенных кварцем крупных почвенных частицах размером более 0,25 мм. В более мелких фракциях увеличивается участие полевых шпатов и железосодержащих минералов, поэтому в этих фракциях возрастает содержание алюминия, железа и других элементов. Особенности химического состава свойственны не только разным типам почв, но и отдельным почвенным горизонтам. Поэтому сведения об их химическом составе служат важными показателями почвообразовательного процесса и, следовательно, плодородия почвы. Химические элементы присутствуют в почве в составе разнообразных минеральных и органических соединений, а также в ионной форме в почвенном растворе. Важнейшие из этих химических элементов следующие.
Кремний. Валовое содержание SiO2 колеблется от 40-70% в глинистых почвах до 90-98%в песчаных. Содержание этого элемента определяется, прежде всего присутствием в почве кварца, а также силикатов и алюмосиликатов. Иногда в почве могут присутствовать аморфный кремнезем в виде опала или халцедона, накопление которых в почве связано с биогенными процессами (скопления диатомовых водорослей или силикатных губок).
Алюминий. Валовое содержание в почве А12O3 составляет от 1-2 до 15-20%. Алюминий присутствует в полевых шпатах и глинистых минералах, а также в составе слюд, корунда и др. Может присутствовать и свободный А1203 (глинозем) в аморфной или кристаллической форме.
Железо. Общее содержание в почве Fе2O3 колеблется от 1 до 20% и более. Железо может входить в состав минералов (наряду с кремнием и алюминием), а также присутствовать в некристаллической форме (в виде железистых аморфных или растворимых вводе соединений).
Кальций. Содержание СаO в почвах обычно составляет 1-3% и определяется его концентрацией в гумусе, органических остатках, а также в глинистых минералах. Повышенное содержание кальция может быть обусловлено присутствием обломков карбонатных пород и Са-содержащих минералов (гипса, кальцита и др.).
Магний. Валовое содержание МO а почве обычно близко к содержанию СаO. Оно обусловлено в первую очередь его присутствием в глинистых минералах, особенно хлорита, вермикулита, монтмориллонита. Встречаются и крупные обломки доломитов, роговых обманок, оливина. Много магния накапливается в виде сульфатов и хлоридов при засолении почв засушливых областей.
Калий. Содержание К20 в почвах составляет 2-3%. Калий присутствует чаще в составе глинистых минералов (особенно в гидрослюдах), а также в составе крупных частиц минералов калиевых полевых шпатов, биотита, мусковита и др. Нередко калий может быть в дефиците, что определяет необходимость внесения калийных удобрений для повышения плодородия почвы.
Натрий. Валовое содержание в почве Nа2О обычно около 1-3%. Этот элемент присутствует в основном в составе натрийсодержащих минералов полевых шпатов. В засоленных почвах степей и пустынь натрий присутствует в виде хлоридов. Дефицита этого элемента растения обычно не испытывают.
Марганец. Содержание Мg составляет в почве несколько десятых или сотых долей процента. Присутствие марганцевых скоплений обусловлено в основном деятельностью марганцевых бактерий. В небольших количествах этот элемент входит в состав минералов (оливинов, пироксенов и др.).
Сера. Содержание S02 в почве обычно не превышает нескольких десятых долей процента. Однако оно может существенно возрастать в случае промышленного загрязнения почв, например в результате выпадения с осадками газообразных выбросов сернистых соединений. Сера присутствует обычно в составе различных органических соединений растительного и животного происхождения. В крупных почвенных частицах сера присутствует в составе сульфидов (пирита), гипса, соединений Fе (II), образующихся в болотных почвах.
Углерод. Содержание этого элемента в почве колеблется от долей процента в бедных органическим веществом песчаных почвах, до 3-5 и даже 10% в богатых гумусом черноземах. А в торфяных почвах его содержание может достигать десятков процентов. В почве углерод содержится главным образом в составе гумуса и органических остатков. Немало этого элемента может находиться и в составе карбонатов. Очень часто почвы, используемые в земледелии, нуждаются во внесении углерода, прежде всего в форме органических удобрений.
Азот. Содержание в почвах азота небольшое обычно не более 0,3-0,4%. Однако этот элемент играет важнейшую роль в плодородии, поскольку жизненно необходим растениям. Растениям азот доступен только в форме нитратов и аммонийного азота. Подобно углероду почти весь азот почвы связан с ее органической частью гумусом и органическими остатками. Однако пополнение доступных растениям запасов азота возможно не только благодаря остаткам растении и животных, но и в результате деятельности микроорганизмов. Так, азотфиксирующие бактерии почвы способны восстанавливать газообразный азот (N2) в аммонийный Большинство почв, вовлеченных в земледелие, нуждается в систематическом пополнении запасов азота.
Фосфор. Валовое содержание Р25 в почве не превышает обычно 0,1-0,2%. Этот элемент принадлежит к числу важнейших биогенных элементов, но в большинстве почв его содержание невысоко. Поэтому возникает необходимость в систематическом внесении фосфора в виде фосфорных удобрений, особенно на почвах легкого механического состава — песчаных и легких супесях. Наряду с названными выше химическими элементами в почве в малых количествах присутствуют и другие элементы (Сu, Со, Ni, Zn, Li, В и другие). Несмотря на их невысокое содержание в почвах, эти элементы очень важны для жизнедеятельности растении и поэтому определяют уровень почвенного плодородия. Химический состав почвы оказывает важнейшее влияние на плодородие почвы. Как дефицит биогенных элементов, так и избыток некоторых токсичных для растений соединений (натрия, марганца, серы) часто имеет решающее значение для их урожайности.