Биогаз из опилок

Как производить биотопливо в домашних условиях

На морских и материковых просторах нашей планеты произрастает огромное количество биомассы. При этом человечество использует очень малую долю энергии, что содержится в этой растительной массе, предпочитая сжигать углеводороды. Но времена меняются и ранее никому не нужные отходы становятся сырьем для производства различных видов биотоплива. В продаже появились различные евродрова, пеллеты и брикеты, изготовленные из таких отходов. Однако, если дома есть подходящие условия, то почему бы и не сделать биотопливо своими руками? В данном материале будет рассказано, из чего и как можно изготавливать горючее в домашних условиях.

Что такое биотопливо?

Энергия, скрывающаяся в растительной массе, является практически неиссякаемой, ведь ее источником служит наше солнце. Растения умеют использовать энергию солнца, перерабатывая ее для своего роста. В свою очередь, животные и птицы получают энергию, питаясь биомассой, при этом производят продукты жизнедеятельности. По определению, биотопливо — это горючее, получаемое из сырья растительного или животного происхождения, а также отходов жизнедеятельности и различных производств, связанных с обработкой биомассы.

Современные технологии позволяют получать биотопливо в трех видах: твердом, жидком и газообразном. Твердое горючее мы встречаем в жизни наиболее часто в виде пеллет и различных брикетов, получаемых методом прессования. Жидкое топливо – биодизель – в странах постсоветского пространства пока еще редкость, это обусловлено наличием большого количества ископаемых углеводородов по приемлемой цене. В то время как получать жидкое биотопливо из растительного масла достаточно дорого и технологически сложно.

Производство горючего биогаза гораздо проще и дешевле, вследствие чего набирает все большую популярность. Владельцы животноводческих и птицеферм все чаще задумываются о приобретении биогазовой установки, ведь в их распоряжении имеется огромное количество помета и навоза, что как нельзя лучше подходят для этой цели.

Перечислять здесь все виды растительного сырья для переработки в топливо, его источники и технологию производства нет смысла. Нас интересуют только те виды биотоплива, которые можно успешно получать в домашних условиях, не вкладывая больших денежных средств. Вот они:

  • биогаз, извлекаемый из продуктов жизнедеятельности домашних животных и птицы;
  • брикеты из различных отходов растительного происхождения;
  • древесный уголь.

Конечно, если очень постараться, то можно самостоятельно изготовить и пеллеты, и экодизель, и даже экобензин. Подобными вещами люди занимаются в качестве хобби, затрачивая на это годы своей жизни и зачастую немалые средства. Для широкого круга пользователей такие непростые технологии малодоступны, а потому рассматривать их мы не будем.

Получение биогаза в домашних условиях

Горючий газ, выделяемый из навоза и прочих подобных видов сырья, в основном состоит из того же метана, которым мы привыкли пользоваться ежедневно у себя на кухне. Доля метана в биогазе составляет от 50 до 70% в зависимости от качества сырья и эффективности технологического процесса. Остальные химические соединения в составе газа – негорючие, это двуокись углерода и сероводород. Именно благодаря последнему весь процесс сопровождается хорошо нам знакомым запахом.

Газообразное биотопливо — это горючее вещество, выделяющееся в результате химической реакции брожения органических отходов без присутствия кислорода. Поэтому основным элементом технологического оборудования является закрытая цилиндрическая емкость (реактор) большой вместительности, желательно не менее 1 м3.

Многие домашние умельцы применяют для этой цели обычные пластмассовые или железные бочки. Это вполне допустимо, реакция будет происходить и в таких сосудах. Только газа будет выделяться немного, как результат это несоразмерно с затраченным временем и трудом. Минимальная вместительность реактора должна составлять хотя бы 600 л.

Чтобы процесс протекал максимально быстро и эффективно, по технологии содержимое реактора надо постоянно подогревать до температуры 35—40 ºС. В домашних условиях это не всегда возможно, да и влечет за собой затраты энергоносителей. Выход следующий: емкость, из которой происходит получение биотоплива, лучше установить в достаточно глубокой яме, сделанной в земле. В идеале дно и стены ямы выполняются из бетона, а верхняя выступающая часть реактора на зиму утепляется. Как это правильно сделано, показано на рисунке:

Общая конструкция установки, позволяющей вырабатывать биотопливо из навоза, содержит следующие элементы (см. схему ниже):

  • реактор – сосуд из металла цилиндрической формы;
  • загрузочный бункер для заполнения реактора субстратом (смесью сырья с водой);
  • люк для обслуживания;
  • наружная емкость – водяной затвор для поддержания необходимого давления в реакторе;
  • труба для выгрузки отработанного материала;
  • патрубок с краном для подачи биогаза.

Примечание. Для улучшения брожения субстрата рекомендуется добавить в конструкцию шнек наподобие строительного миксера. Он устанавливается по центру бака, а наружу через уплотнение выводится рукоятка для периодического перемешивания содержимого.

Технологический процесс выполняется следующим образом. Вначале отходы жизнедеятельности нужно обязательно измельчить. Крупность фракции не должна превышать 10 мм, это обеспечит хорошее проникновение бактериям, вызывающим брожение. Затем сырье заливается водой и тщательно перемешивается. Количество воды – ориентировочно 0.7 л на каждый килограмм навоза. Получается субстрат, из него добывается биотопливо в домашних условиях.

Субстратом заполняют емкость через бункер, который потом герметично закрывается. По мере возможности содержимое надо перемешивать. По прошествии нескольких дней начинает выделяться горючий газ, его нужно периодически откачивать, чтобы давление внутри бака не поднималось. Это приведет к замедлению реакции и вытеснению содержимого обратно в загрузочный бункер. Для откачивания газа применяют компрессор и обычный баллон для пропана. Подробное описание установки и технологии производства можно изучить, просмотрев видео:

Нельзя сказать, что выделение биогаза из различных видов навоза и помета – простое дело. Домашним умельцам приходится идти путем проб и ошибок: то горючего выделяется слишком мало, то реакция не идет и так далее. Надо понимать, что для достижения успеха потребуется немало труда и терпения, а количества топлива вряд ли хватит для обогрева дома. Тем не менее, для работы газовой колонки и кухонной плиты его будет вполне достаточно, что уже большой плюс. Как эти приборы функционируют на биогазе, показано на видео:

Изготовление брикет

Наладить дома производство биотоплива из опилок, соломы и других отходов несколько проще. Из оборудования понадобится лишь ручной пресс, сделанный специально для этой цели. Его можно приобрести в готовом виде, заказать мастерам либо, при наличии соответствующих навыков, изготовить самостоятельно. Пресс заводской готовности стоит немало денег, поэтому последний вариант обойдется вам дешевле всего.

Производство брикет начинается с приготовления смеси. В качестве сырья используются опилки, шелуха семечек, солома и даже размоченная макулатура. Конечно, такое топливо может и так чудесно сгореть в печи или твердотопливном котле, но из-за низкой насыпной плотности придется слишком часто производить загрузку топки. Готовое твердое биотопливо из соломы или опилок будет гореть гораздо дольше.

Смесь состоит из сырья, воды и глины, служащей связующим веществом. Солому или бумагу необходимо предварительно измельчить, затем смешать с глиной в пропорции 10:1 (на 10 кг отходов 1 кг глины) и водой. Количество воды надо подбирать таким, чтобы обеспечить равномерное перемешивание и способность смеси к формованию. Не стоит добавлять в раствор много глины, не забывайте, что она останется в вашем котле в виде золы.

Смесью наполняется специальная форма, потом она кладется под пресс. После прессования готовый брикет аккуратно вынимается и раскладывается сушиться на солнце. Увидеть операцию прессования можно на видео:

Получение древесного угля

Древесные угли представляют интерес для домовладельцев как топливо, используемое в домашних мангалах и барбекю. Не секрет, что покупать подобный уголь в магазине достаточно дорого, в то время как дома его можно выжечь бесплатно, только затратив свое время. Кстати говоря, сжигать его в твердотопливных котлах или печах бессмысленно, гораздо проще заложить в топку обычные дрова.

Выжигают уголь из древесины 2 способами:

Для первого способа требуется обычная стальная бочка на 200 л и бытовой пылесос. Последний послужит для нагнетания воздуха, поэтому в нижней части бочки должен быть врезан патрубок для его подключения. На дне емкости разводят огонь, затем заполняют ее дровами до половины и включают пылесос. Затем древесины накладывают доверху, закрывают ее крышкой и замазывают глиной. Когда все прогорит и бочка остынет, производится сортировка с целью отделить древесные угли от золы.

Похожим образом древесина обжигается в яме. Последняя выкапывается 0.8 м в диаметре и не более 0.6 м в глубину. Дно ямы утрамбовывается, после чего в ней разводят костер и послойно накладывают дрова длиной до 30 см. Наполнение происходит по мере обжигания предыдущего слоя, процесс длится около 3 часов. В конце яма накрывается ветками и мхом, а сверху присыпается землей. Через 2 дня покрытие можно снимать и выбирать угли.

Заключение

Современные технологии позволяют получать горючее из различных видов биомассы, в некоторых приморских странах даже производят биотопливо из водорослей. Но на данный момент рядовому домовладельцу доступны лишь описанные способы, остальные обойдутся слишком дорого. Проще и дешевле всего делать брикеты, особенно когда в доме установлен твердотопливный котел.

Биогазовая установка своими руками: интернет-мифы и сельская реальность

Экология потребления.Усадьба: Выгодно ли производить биотопливо в домашних условиях в малых количествах в личном подсобном хозяйстве? Если у вас есть несколько металлических бочек и прочего железного хлама, а также бездна свободного времени и вы не знаете, как им распорядиться — да.

Предположим, природного газа в вашей деревне не было и не будет. А даже если есть, он денег стоит. Хотя и на порядок дешевле, чем разорительное отопление электричеством и жидким топливом. Ближайший цех по производству пеллет находится в паре сотен километров, везти накладно. Дрова купить с каждым годом всё сложнее, да и топить ими хлопотно. На этом фоне весьма заманчиво выглядит идея получать дармовой биогаз на собственном подворье из сорняков, куриного помёта, навоза от любимой свинки или содержимого хозяйского нужника. Достаточно лишь смастерить биореактор! По телевизору рассказывают, как экономные немецкие фермеры согревают себя «навозными» ресурсами и никакой «Газпром» им теперь не нужен. Вот уж где справедлива поговорка «с фекалий плёнку снимет». Интернет пестрит статьями и роликами на тему «биогаз из биомасс» и «биогазовая установка своими руками». Но о практическом применении технологии у нас мало что известно: про производство биогаза в домашних условиях говорят все, кому не лень, но конкретные примеры в деревне, так же, как и легендарный Ё-Мобиль на дороге, мало кто видел живьём. Попробуем разобраться, почему это так и каковы перспективы прогрессивных биоэнергетических технологий на селе.

Что такое биогаз + немного истории

Биогаз образуется в результате последовательного трёхступенчатого разложения (гидролиз, кислото- и метанообразование) биомассы различными видами бактерий. Полезная горючая составляющая — метан, может присутствовать также водород.

Процесс бактериального разложения, в результате которого образуется горючий метан

В большей или меньшей степени горючие газы образуются в процессе разложения любых остатков животного и растительного происхождения.

Ориентировочный состав биогаза, конкретные пропорции составляющих зависят от применяемых сырья и технологии

Люди издавна пытаются использовать этот вид природного топлива, в средневековых хрониках содержатся упоминания о том, что жители низменных районов нынешней Германии ещё тысячелетие назад получали биогаз из гниющей растительности, погружая в болотную жижу кожаные мехи. В тёмные средние века и даже просвещённые столетия наиболее талантливые метеористы, благодаря специально подобранной диете умевшие пустить и вовремя поджечь обильный метановый flatus, вызывали неизменный восторг публики на весёлых ярмарочных представлениях. Промышленные биогазовые установки с переменным успехом начали строить с середины XIX века. В СССР в 80-е годы прошлого века была принята, но не реализована госпрограмма по развитию отрасли, хотя с десяток производств всё же запустили. За рубежом технология получения биогаза совершенствуется продвигается относительно активно, общее число работающих установок исчисляется десятками тысяч. В развитых странах (ЕЭС, США, Канада, Австралия) это высокоавтоматизированные крупные комплексы, в развивающихся (Китай, Индия) — полукустарные биогазовые установки для дома и небольшого крестьянского хозяйства.

Процентное соотношение числа биогазовых установок в странах Евросоюза. Отчётливо видно, что технология активно развивается только в Германии, причина — солидные государственные дотации и налоговые льготы

Какое применение находит биогаз

Понятно, что в качестве топлива, раз он горит. Отопление производственных и жилых зданий, генерация электроэнергии, приготовление пищи. Однако не всё так просто, как показывают в роликах, разбросанных по ютюбу. Биогаз должен стабильно гореть в теплогенерирующих установках. Для этого его параметры газовой среды необходимо привести к довольно жёстким стандартам. Содержание метана должно быть не ниже 65% (оптимум 90-95%), водород отсутствовать, водяные пары выведены, углекислый газ удалён, оставшиеся составляющие инертны к высоким температурам.

Использовать биогаз «навозно-животного» происхождения, не освобождённый от зловонных примесей, в жилых домах невозможно.

Нормируемое давление — 12,5 бар, при значении менее 8-10 бар автоматика в современных моделях отопительного оборудования и кухонного оборудования прекращает подачу газа. Очень важно, чтобы характеристики поступающего в теплогенератор газа были стабильными. В случае скачка давления за пределы нормы сработает клапан, включать обратно придётся вручную. Плохо, если используются устаревшие газовые приборы, не оснащённые системой газ-контроля. В лучшем случае может выйти из строя горелка отопительного котла. Худший вариант — газ потухнет, но его поступление не прекратится. А это уже чревато трагедией. Обобщим сказанное: характеристики биогаза необходимо привести к необходимым параметрам, а технику безопасности соблюдать неукоснительно. Упрощённая технологическая цепочка получения биогаза. Важный этап — сепарация и газоотделение

Читайте также:  Бузина черная декоративная

Какое сырьё используют для получения биогаза

Растительное и животное сырьё

  • Растительное сырьё отлично подходит для производства биогаза: из свежей травы можно получить максимальный выход топлива — до 250 м3 на тонну сырья, содержание метана до 70%. Несколько меньше, до 220 м3 можно получить из кукурузного силоса, до 180 м3 из свекольной ботвы. Пригодны любые зелёные растения, хороши водоросли, сено (100 м3 из тонны), но пускать ценные корма на топливо имеет смысл лишь при их явном избытке. Невелик выход метана из жома, образующегося при изготовлении соков, масел и биодизеля, но и материал дармовой. Недостаток растительного сырья — длительный производственный цикл, 1,5-2 месяца. Можно получать биогаз и из целлюлозы, других медленно разлагающихся растительных отходов, но эффективность крайне низкая, метана образуется мало, производственный цикл очень длительный. В заключение скажем, что растительное сырьё обязательно должно быть мелко измельчено.
  • Сырьё животного происхождения: традиционные рога и копыта, отходы молокозаводов, боен и перерабатывающих предприятий также пригодно и тоже в измельчённом виде. Самая богатая «руда» — животные жиры, выход высококачественного биогаза с концентрацией метана до 87% достигает 1500 м3 на тонну. Тем не менее, животное сырьё в дефиците и, как правило, ему находят иное применение.

Горючий газ из экскрементов

  • Навоз дёшев и во многих хозяйствах имеется в достатке, однако выход и качество биогаза значительно ниже, чем из других видов. Коровьи лепёшки и лошадиные яблочки можно использовать в чистом виде, ферментация начинается сразу, выход биогаза 60 м2 на тонну сырья с невысоким содержанием метана (до 60%). Производственный цикл короткий, 10-15 дней. Свиной навоз и куриный помёт токсичны — чтобы полезные бактерии могли развиваться, его смешивают с растительными отходами, силосом. Большую проблему представляют моющие составы, ПАВы, которые применяются при уборке животноводческих помещений. Вкупе с антибиотиками, которые в большом количестве попадают в навоз, они угнетают бактериальную среду и тормозят образование метана. Не применять дезинфицирующих средств вовсе невозможно и агропредприятия, вложившиеся в производство газа из навоза, вынуждены искать компромисс между гигиеной и контролем над заболеваемостью животных с одной стороны и поддержанием продуктивности биореакторов с другой.
  • Человеческие экскременты, совершенно бесплатные, тоже подходят. Но использовать обычные канализационные стоки нерентабельно, слишком мала концентрация фекалий и высока дезинфицирующих средств, ПАВ. Технологи утверждают, что их можно было бы использовать лишь в случае, если в канализацию будут поступать «продукты» только из унитаза при условии, что смыв чаши осуществляется лишь одним литром воды (стандарт 4/8 л). И без моющих средств, естественно.

Дополнительные требования к сырью

Серьёзная проблема, с которой сталкиваются хозяйства, установившие у себя современное оборудование для получения биогаза — сырьё не должно содержать твёрдых включений, случайно попавший в массу камень, гайка, кусок проволоки или доска закупорит трубопровод, выведет из строя дорогостоящий фекальный насос или мешалку. Нужно сказать, что приведенные данные по максимальному выходу газа из сырья соответствуют идеальным лабораторным условиям. Чтобы приблизиться в реальном производстве к этим цифрам, необходимо соблюсти ряд условий: поддерживать необходимую температуру, периодически перемешивать мелко измельчённое сырье, вносить добавки, активизирующие ферментацию и т.д. На кустарной установке, собранной по рекомендациям статей о «получении биогаза своими руками», едва лишь можно достичь 20% от максимального уровня, высокотехнологические установки позволяют добиваться значений в 60-95%.

Достаточно объективные данные по максимальному выходу биогаза для различных типов сырья

Устройство биогазовой установки

  • «Домашняя» биогазовая установка. Как минимум, необходимо иметь два герметичных сосуда, биореактор и накопитель, в который по трубочке отводится газ. Желательно иметь третий сосуд, куда биогаз будет закачиваться под давлением, тогда во втором частично осядет влага. Конструкция несильно отличается от самогонного аппарата. Сырьё хорошо бы постоянно помешивать, для этого нужна мешалка и электродвигатель или здоровый выносливый мужик. Рассчитывать на высокую производительность и хорошее качество биогаза особо не стоит.
  • Промышленная установка по производству биогаза. Не будем вдаваться в подробности, лучше приведём принципиальную схему:Оборудование включает в себя, как минимум, реактор и газгольдер, сепаратор, мешалки, насосы, компрессорную станцию, систему поддержания постоянной температуры, устройства безопасности, управление. Для интенсификации процессов применяют также кавитаторы, устройства для анализа среды и внесения активаторов, и т.д
  • Состав полученного биогаза необходимо нормализовать, после хранилища он поступает на разделительные и сорбционные колонки, далее в газгольдере доводится до необходимого давления и лишь только тогда поступает в магистраль, ведущую к теплогенераторам. Биоэнергетическое производство в составе современного животноводческого комплекса.Включение в его состав теплиц и цеха по производству удобрений повышает рентабельность.

Выгодно ли заниматься производством биогаза

Мы уже упоминали, что в развитых странах строят крупные промышленные установки, а в развивающихся главным образом мелкие, для небольшого хозяйства. Объясним, почему так:

  • Бедные страны. В кустарной установке при её чудовищной неэффективности всю работу можно производить вручную. Для стран, где крестьянам за тяжёлый труд платят сущие копейки, в этом есть выгода. Тем более, что в тёплых краях урожай можно собирать несколько раз в год и дешёвое растительное сырьё имеется в избытке. Вложения в простейшую систему относительно небольшие, с низким качеством биогаза люди готовы мириться. Хозяину дешевле приставить к допотопному котлу или плите «смотрящего», чем приобретать оборудование для нормализации биогаза.Китайские крестьяне заготавливают сырьё для производства биогаза
  • Богатые страны. В Германии, мировом лидере в области производства биогаза, почти половина птицефабрик и крупных животноводческих хозяйств вырабатывает собственный метан. Процессы максимально автоматизированы, качество биогаза высокое, производственные мощности большие. Отработанное сырьё проходит дополнительную обработку, минерализуется, в результате хозяйства получают обеззараженное неагрессивное комплексное удобрение. Несмотря на высокие показатели выхода метана из сырья, и немалые цены на энергоносители, специалисты утверждают, что для фермеров биогазовая энергетика оправдывает себя лишь потому, что государство дотирует 50% стоимости оборудования. Дополнительную выгоду можно получить, произведя из газа электроэнергию. Во-первых, правительство покупает её по завышенным ценам; во-вторых, таким образом можно минимизировать последствия неравномерного сезонного производства биогаза. За улучшение экологического состояния земель в результате применения не агрессивного навоза, а «мягкого» удобрения государство тоже доплачивает. Биогазовое производство в Германии: экологично, эстетично, возможно только благодаря финансовой помощи федерального правительства
  • Россия. Худо-бедно биогазовая энергетика развивается и у нас. Время от времени СМИ рапортуют о пуске очередного производства, в интервью радостный учёный, проектировщик или директор хозяйства сообщает, что срок окупаемости установки — один год. Но жизнь вносит свои коррективы. Со временем оказывается, что при составлении бизнес-плана не учли эксплуатационные расходы, на практике выход газа намного ниже, чем планировалось, а сроки ферментации намного выше. Те, кто поработал с полгодика, уже называют срок окупаемости инвестиций в 5 лет. А по истечении этого времени люди вообще стараются не давать интервью. К сожалению, биоэнергетикой у нас занимаются разрозненные коллективы и заслуживающих доверия данных по доходности в условиях России нет. В целом можно предположить, что, с учётом меньших, чем на Западе, цен на энергоносители и доступность местных видов топлива, производство биогаза в нашей стране находится на грани рентабельности, что не способствует её развитию без поддержки государства.

Имеет ли смысл производить биотопливо в домашних условиях

Выгодно ли производить биотопливо в домашних условиях в малых количествах в личном подсобном хозяйстве? Если у вас есть несколько металлических бочек и прочего железного хлама, а также бездна свободного времени и вы не знаете, как им распорядиться — да. Но экономия, увы, мизерная. А уж вкладывать деньги в высокотехнологичное оборудование при небольших объёмах поступления сырья и производства метана не имеет смысла ни при каком раскладе.

Очередной ролик отечественного Кулибина

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций – важный фактор оздоровления – econet.ru.

Ставьте ЛАЙКИ, делитесь с ДРУЗЬЯМИ!

Без перемешивания сырья и активации процесса ферментации выход метана составит не более 20% от возможного. Значит, в лучшем случае с 100 кг (загрузка бункера) отборной травы можно получить 5 м3 газа без учёта сжатия. И будет хорошо, если содержание метана превысит 50% и не факт, что он будет гореть в теплогенераторе. По утверждению автора, сырьё загружается ежедневно, то есть производственный цикл у него — одни сутки. На самом деле необходимое время — 60 суток. Количества полученного изобретателем биогаза, содержащегося в 50-литровом баллоне, который он сумел заполнить, в морозную погоду для отопительного котла мощностью 15 кВт (жилой дом около 150 м2) хватит на 2 минуты.

Тем, кого возможность производства биогаза заинтересовала, рекомендуется внимательно изучить проблему, особенно с финансовой точки зрения, с техническими вопросами обратиться к специалистам, имеющим опыт подобных работ. Весьма ценной будет практическая информация, полученная в тех хозяйствах, где биоэнергетические технологии уже используются какое-то время. опубликовано econet.ru

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Из чего же гнать бензин, как не из опилок…

Бензин из древесных отходов. Мобильные установки в контейнерах

Из органических отходов, в частности, отходов лесопиления и деревообработки, которые даже сегодня перерабатываются далеко не в полном объеме, вполне можно производить не только твердое топливо в виде пеллет и брикетов, но и жидкое биотопливо, идентичное бензину или дизельному топливу.

В 2013 году был опубликован общий обзор технологий и существующих производств жидкого биотоплива. Что нового произошло в этой сфере за минувшие шесть лет?

Представляем успешные научные исследования и действующие модели европейского проекта BIOGO, в котором участвуют такие гранды европейской науки, как Фраунгофер-институт микротехники и микросистем (IMM)2, и 12 научных групп из семи стран Евросоюза. Электроэнергии, получаемой из альтернативных источников (ветра, солнца, воды и др.), абсолютно недостаточно, для того чтобы в ближайшей перспективе можно было отказаться от традиционных невозобновляемых источников энергии: угля, нефтепродуктов и газа. В лучшем случае за счет возобновляемых источников энергии можно будет обеспечить энергопотребление автотранспорта с электрическими и гибридными двигателями, используя для этого водородные топливные элементы. Актуально и постепенное вытеснение бензина жидким биотопливом.

А сырье для такого топлива буквально лежит под ногами – в лесу: это лесосечные остатки, сучья, ветки, кора. Все то, что до сих пор не перерабатывается в промышленных объемах в России, да и во многих других странах. «Это сырье не нужно специально выращивать, в отличие от зерновых для получения биоэтанола и других сельскохозяйственных растений, применяемых для производства биодизеля, поэтому никакой конкуренции с производителями пищевой продукции. К тому же оно климатически нейтрально, а его переработка и использование полностью поддерживается решениями Парижского соглашения Рамочной конвенции ООН по изменению климата 2015 года», – говорит координатор ЕС-проекта из Фраунгофер-института микротехники и микросистем Гюнтер Кольб.

Важнейшая цель проекта BIOGO – децентрализация производства топлива. В отличие от нефти, которую необходимо с месторождений транспортировать на перерабатывающий завод, откуда потом доставлять потребителю готовую продукцию, жидкое биотопливо можно производить децентрализованно, рядом с сырьевой базой, и на месте использовать готовый продукт для заправки, например, технологического автотранспорта. Именно для этого в рамках ЕС-проекта разработан мобильный мини-завод в контейнерном исполнении, который может работать абсолютно автономно, прямо в лесу, на деляне.

Прототип такого мини-завода сегодня представлен на территории Фраунгофер-института. Это результат четырех лет интенсивной работы ученых. Все оборудование для получения из древесных отходов высококачественного биобензина вмещается в стандартный 40-футовый контейнер размером 12 х 3 х 3 м. Принцип его работы следующий: в первой фазе процесса по технологии итальянской компании Spike Renewables из древесных отходов после пиролиза получается пиролизное масло. Во второй фазе пиролизное масло в специальном микрореакторе высокого давления при нагреве с подачей воздуха и водяного пара преобразуется в синтез-газ. А затем в другом микрореакторе из синтез-газа производится метанол, от которого потом отделяется азот. Процесс оптимизирован, и на выходе получается синтетический бензин, по химическому составу идентичный нефтяному бензину. Для ускорения химических процессов применяются специальные катализаторы. Раньше приходилось использовалось большой объем благородных металлов и редкоземельных элементов для получения необходимых катализаторов, что обуславливало их довольно высокую стоимость. Британская фирма Teer Coatings Ltd разработала для проекта BIOGO высокопродуктивные ресурсосберегающие нанокатализаторы на основе использования мельчайших групп каталитически активных субстанций на поверхности.

Читайте также:  Варианты откатных ворот

Одной из сложнейших задач для ученых стало размещение комплекса оборудования в относительно маленьком контейнере с обеспечением общей и пожарной безопасности и удобства обслуживания. Ноу-хау специалистов Фраунгофер-института и их парт­неров из австрийской компании Microinnova Engineering позволило найти решение – в контейнере даже осталось место для установки довольно больших реакторов. В ближайшее время разработчики прототипа намерены увеличить производительность мини-завода до 1000 л биобензина в сутки.

Значит ли это, что скоро можно будет заправлять автомобиль не на АЗС, а в лесу, из контейнера? «Конечно нет, – отвечает г-н Кольб. – Все зависит от цен на нефть и политической воли государственных деятелей стран мира. При сегодняшних ценах на нефть и нефтепродукты биобензин абсолютно неконкурентоспособен. Но если будут приняты серьезные меры, направленные на отказ от невозобновляемых источников энергии в пользу возобновляемых: введены налоговые льготы и субсидии на производство жидкого биотоплива и в то же время увеличение налогов на традиционные виды топлива, – ситуация может в корне измениться. Однако уже сейчас технологию производства биобензина из органических отходов в небольших объемах при наличии дешевого сырья можно использовать децентрализованно, для обеспечения топливом местного автопарка. Биобензин подойдет и в качестве добавки к классическому бензину, как сейчас во многих странах применяют биодизель».

Теперь о проекте BIOGO. Он предусматривает создание полностью интегрированного производства жидкого биотоплива с использованием новых гетерогенных нанокатализаторов и устойчивых ресурсов. Производство будет интегрировано с вспомогательными функциями инновационной технологии микрореакторов, разработанной в рамках проекта. BIOGO использует особые свойства нанокатализаторов для повышения эффективности производства за счет интенсификации и тем самым предлагает решение некоторых проблем, стоящих сегодня перед нефтехимической промышленностью Европы. Проект предусматривает разработку и производство в промышленных масштабах высокотехнологичных наноразмерных катализаторов преобразования биоресурсов в жидкое топливо.

Проект направлен на разработку и демонстрацию технологии преобразования таких возобновляемых источников энергии, как пиролизные масла и биогаз, в синтез-газ для последующего каталитического превращения в биотопливо и продукты химической платформы; применяемые каталитические составы должны характеризоваться минимальными содержаниями оксидов редкоземельных металлов и драгоценных металлов.

Основные технические цели BIOGO:

  • разработка новых конструкций, маршрутов подготовки и методов нанесения нанокатализаторов на инновационные микроструктурные реакторы;
  • проектирование и разработка нанокатализаторов, предназначенных для совместного или парного реформирования биогазовых и пиролизных масел, высокоэффективного мелкосерийного производства метанола, эффективной и экономичной конверсии метанола в бензин, гидрирования биомасел до химических веществ класса дизтоплива с увеличением их выхода;
  • интегрирование цепочки технологических процессов в мини-заводы для производства бензина из органического сырья в виде различных отходов.

А что предлагают российские разработчики подобных технологий? Среди довольно большого количества предложений по переработке органических отходов в жидкое биотопливо можно выделить мобильную малотоннажную установку модульной конструкции от ООО «ТРИВИМ Лтд» из города ядерщиков Сарова. В качестве сырья подходят древесные отходы и отходы растениеводства. Технология аналогична вышеописанной немецкой:

  • измельчение, сушка и газификация сырья с получением генераторного газа, а затем синтез-газа;
  • преобразование синтез-газа с помощью катализаторов в смесь углеводородов;
  • получение из углеводородной смеси соответствующих ГОСТу дизтоплива, низкооктанового бензина и парафинов.

При сжигании газообразной фракции предусмотрено генерирование тепловой и электрической энергии.

К большому сожалению, в обозримом будущем в России вряд ли найдут применение такие разработки. Если производители твердого биотоплива вот уже второе десятилетие не видят от государства почти никакого внимания и поддержки за исключением мелких «подачек» в виде компенсации части тарифа на железнодорожные перевозки при экспорте пеллет, а древесная биомасса даже не упоминается в документах федерального уровня, касающихся возобновляемых источников энергии, то что говорить о жидком биотопливе, производство которого угрожает интересам российских нефтяных магнатов и примкнувших к ним?

Справка

Биобензин (синтетический бензин) производили в промышленном масштабе еще в 30–40-е годы прошлого века. В Германии газифицировали ископаемые угли и из синтез-газа по методу Фишера-Тропша получали бензин. Сырьем может служить и твердая биомасса, в том числе древесина.

У биобензина очень большие преимущества перед обычным бензином: при его сжигании не образуются канцерогенные вещества, а также соединения серы, азота и тяжелых металлов. В настоящее время биобензин не производится ввиду высокой себестоимости. Однако в годы Второй мировой войны в Германии синтетический бензин использовали из-за недостатка сырья для нефтяного бензина.

Технология производства биотоплива

Технология производства разных видов биотоплива

В основе технологии производства топливных гранул, как и топливных брикетов лежит процесс прессования измельченных отходов древесины, соломы, лузги и др.

Расстановка оборудования на каждом предприятии может быть разная. Однако принципы – общие с момента возникновения технология производства пеллет в 1947 году. Сам по себе процесс гранулирования – пеллетизации происходит в специальных кольцевых штампах (пресс-формах) вращающимися роторными вальцами, которые впрессовывают в многочисленные отверстия – фильеры пресс-формы, активизированное паром измельченное древесное сырье, после чего, срезанные с наружной стороны штампа специальным ножом гранулы, должны быть охлаждены и отделены от мелких частиц.
Весь процесс производства условно можно разделить на несколько этапов:
• Измельчение
• Сушка
• Доизмельчение
• Водоподготовка
• Прессование
• Охлаждение
• Фасовка и упаковка
Рассмотрим подробнее каждый этап производства:
• Измельчение древесного сырья. Рубительные машины (Дробилки) измельчают древесное сырьё до фракции с размерами не более 25х25х2 мм для дальнейшей сушки. Лучше всего для снижения энергозатрат на сушку измельчать до более мелкой фракции.
• Сушка. Древесное сырье перед прессованием должно иметь влажность 10 % ± 2 %. Сырье с большей или меньшей влажностью требует дополнительного увлажнения или дополнительной сушки. Сушилки делятся на два типа: барабанного и ленточного. Ленточного типа: дороже, но безопасней. По типу применяемого сушильного агента они подразделяются на сушилки на топочных газах, горячем воздухе и водяном паре. По типу применяемого вида топлива для производства ДТГ: газовые и на древесных отходах.
• Доизмельчение сухого сырья. Для устойчивой работы пресса входная фракция должна быть не более 4 мм. Такую фракцию может обеспечить молотковая мельница, стружечный станок или дезинтегратор.
• Водоподготовка. Сырье с влажностью менее 8% плохо поддается прессованию, поэтому требуется, устройство дополнительного увлажнения сырья. Лучший вариант – это шнековые смесители, имеющие возможность подачи воды или пара. Пар применяют для снижения прочности и увеличения пластичности древесного сырья твердых пород. Прессы некоторых производителей из-за конструктивных особенностей не требуют добавления пара. Некоторые применяют пар для старого, слежавшегося сырья, но таким сырьем сложно получить гранулы хорошего качества.

В основе всего процесса гранулирования или в сердце его находится пресс. Сегодня существует несколько десятков производителей прессов из разных стран мира (CPM, Andritz, Salmatec, Amandus Kahl, Buhler, Munch и многие другие). Многие прессы конструктивно различаются по видам матриц:
– пресс с круглой матрицей
– пресс с плоской матрицей.

Пресс с круглой матрицей разрабатывался для комбикормовой, пищевой и химической промышленности. А пресс с плоской матрицей изначально для утилизации промышленных и бытовых твердых отходов. На сегодняшний день прессы обеих модификаций, используемые в гранулировании, работают по одинаковому принципу. Бегущие катки создают контактное напряжение смятия сырья на матрице, и через отверстия в матрице продавливают сырье, которое обрезается ножами. Прессы выполнены из особо прочных материалов с жесткими мощными корпусами. Матрица и катки изготовлены из специальных закаленных износостойких сплавов. Гранулирование древесины, как материала имеющего высокую плотность, требует повышенного усилия для прессования. При прессовании происходит уплотнение древесного сырья до 3 раз. Удельное потребление электроэнергии составляет от 30 до 50 кВт в час на тонну. Из-за сил трения и адиабатических процессов, происходящих при резком сжатии сырья, температура в рабочей зоне пресса достигает 100°С.
• Охлаждение. Чем выше усилия прессования и выше температура сырья, тем лучше гранулы по качеству. При увеличении температуры прессования свыше 120°С происходят необратимые процессы в гранулируемом сырье, которые приводят к ухудшению качества гранул. Охлаждение необходимо для кондиционирования гранул после прессования. У хороших производителей оборудования в технологическом процессе, после охладителя существуют системы для очистки готовых гранул от пыли, что существенно улучшает качество выпускаемой продукции.
• Фасовка и упаковка. Фасовка и упаковка топливных гранул зависит от того, какая система хранения существует у потребителя.
– в свободном виде – насыпью.
– в мешках биг-бэг, от 500 до 1200 кг.
– в мелкой расфасовке по 10…20 кг.

Способы расфасофки топливных гранул

• В свободном виде – насыпью
Подразделяется на две группы:
– Первая идет на крупные ТЭЦ, требования по качеству невысокие, цена также небольшая: промышленные пеллеты.

– Вторая – высокого качества для котлов небольшой мощности и дальнейшей фасовки в мелкую упаковку, требования высокие, цена также достаточно высокая.

• Фасовка в биг-бэги
Фасовка в биг-бэги применяется для индустриальной транспортировки сыпучих продуктов. Биг-бжги изготавливаются из прочного полимера, имеют петли для механизации погрузо-разгрузочных работ, а также позволяют сохранять постоянную требуемую влажность ДТГ при открытом складировании. Цена ДТГ в биг-бэгах выше, чем при доставке насыпью.

• Мелкая расфасовка
Самая дорогая группа. Цены на гранулы в мелкой расфасовке наиболее высокие, и превышают 200 Евро за тонну. К данной группе ДТГ предъявляются повышенные требования по качеству. Очень удобна для тех заказчиков, кто не может иметь склада для хранения в насыпном виде. Перевозится на паллетах (поддонах). Массой до одной тонны. На снимках показаны варианты транспортного пакета и мешка 20 кг.

При подготовке абзаца использовалась информация из справочника “Древесные топливные гранулы в России и СНГ”, Ракитова О.С, Овсянко А.Д., Александрова С.Е., СПб, 2005

Для каждого вида топлива существует своя технология сжигания, обоснованная, как технически, так и экономически. Топливную гранулу можно сжигать на различном оборудовании. Однако максимальной эффективности можно добиться лишь с помощью котлов и горелок, специально для этого предназначенных.
Процесс получения тепловой энергии из гранул можно назвать горением только с большой натяжкой, т.к. гранулы не горят в прямом смысле этого слова, а тлеют. При этом котел, исчерпав топливо в контейнере, может продолжать снабжение теплом в течение 24 часов за счет малой скорости протекания процесса.
В Европе больше половины котлов на древесных гранулах имеют среднюю мощность от 100 кВт до 1 МВт. Обычно такие печи устанавливаются в больших частных домах, школах, на небольших предприятиях.
Кроме котельных на пеллетах, существуют также камины на гранулах и брикетах. Подобные камины работают не как котлы, а как воздухонагреватели, поэтому не требуют системы трубопроводов. Чаще они используются (как и традиционные камины) в качестве дополнительного средства обогрева.
На сегодняшний день на рынках стран СНГ представлены и горелки для переоборудования жидкотопливных котлов под гранулу, и котельное оборудование большой мощности, и промышленные парогенераторы на биотопливе, и маломощные автоматизированные котлы для частных домов, и комнатные камины для сжигания топливной гранулы. Большая часть оборудования импортируется. Однако и целый ряд отечественных предприятий предлагает оборудование, предназначенное для сжигания пеллет.
Кстати, первые котлы на биотопливе появились вообще в России. До 60-х годов ХХ века в СССР было разработано и смонтировано немало таких котлов. Однако задача тогда ставилась иная: «утилизировать отходы». На Западе была другая цель: добиться максимального КПД для того, чтобы снизить себестоимость производимой энергии, поэтому европейцы пошли дальше россиян в изучении нюансов сжигания биотоплива. Например, при сжигании хвои и ряда других элементов образуется едкий натр или гидрат окиси натрия. Минеральные соли, которые образуются в результате этой реакции губительно влияют на стальные котлы, но сегодня уже есть технологии, позволяющие нейтрализовать подобные вредные эффекты.
Для каждого вида биотоплива существует своя специальная и специфическая технология. Котельные, предназначенные для биомассы влажностью менее 30%, не будут эффективны ни для сжигания влажного биотоплива с содержание воды около 50%, ни для рафинированного биотоплива. Влажное сырье не будет гореть из-за того, что ему необходима очень высокая температура внутри котла. Древесные гранулы (рафинированное биотопливо) будут сгорать в таком котел, но при этом потеряют экономическую целесообразность, поскольку стоимость котла на гранулах ниже, чем на влажной или сухой (до 35%) биомассе – опилках, щепе и т.д.
В настоящее время в Европе разработан достаточно широкий ряд типов котлов на биотопливе:
– котлы на прессованом биотопливе – гранулах и брикетах,
– котлы на сухом биотопливе (влажность до 30%),
– котлы на влажном биотопливе (влажность до 55%)
– котлы для сжигания торфа и смесей из торфа,
– котлы для сжигания коры и смесей из коры,
– котлы для сжигания другого органического сырья.
В зависимости от характеристик котлы ориентируются на разные сегменты рынка: от частных потребителей до крупных предприятиях и муниципальных котельных.
(Выдержки из справочника “Древесные топливные гранулы в России и СНГ” под ред. Ракитовой О., СПб. 2005)

Брикеты подразделяются по двум принципам:
Первое – по сырью, из которого они изготовлены. Здесь выделяют: брикеты из древесных отходов (стружка и опил без коры, отходы с корой, кора, отходы производства МДФ, шлифпыль, отходы фанерных производств, лигнин, брикеты из сельскохозяйственных отходов); брикеты из агробиомассы (солома , шелуха подсолнечника, шелуха злаковых, отходы хлопка, сено, камыш); брикеты из прочих материалов (бумага, картон, целлюлоза, полимеры, торф).
Второе — по способу прессования и форме. Брикеты бывают трех видов: цилиндрические, экструдерные и в виде кирпичика.
Цилиндрические брикеты
Этот вид брикетов получается путём прессования на оборудовании ударно-механического типа. Они имеют бесконечную длину, и могут быть разделены как на шайбы, так и на поленья. Имеют очень высокую плотность, пользуются большой популярностью в Европе.
Такие брикеты могут иметь не только круглую, но и квадратную или восьмиугольную форму, иметь или не иметь отверстие. Вид брикета заказывает покупатель, он зависит от того, какие формы больше популярны в каждой отдельно взятой стране. Данные брикеты охотно покупают такие страны, как Германия, Дания, Великобритания, Норвегия, Швеция, Италия. На внутреннем рынке, чаще всего используют кусковые брикеты, изготовленные по данной технологии, в качестве топлива для твёрдотопливных котлов.
Экструдерные брикеты
Эти брикеты обязательно имеют отверстие внутри и обожженную верхнюю поверхность.
В основе экструзивной технологии производства брикетов лежит процесс прессования шнеком под высоким давлением при нагревании от 250 до 350 С°. Температура, присутствующая при прессовании, способствует оплавлению поверхности брикетов, которая благодаря этому становится прочной, что немаловажно для транспортировки брикета.
Такие брикеты закладываются вручную в топку котла или в печку, они пользуются спросом в Прибалтике и на внутреннем рынке России.
Брикеты в виде кирпичика

Эта продукция имеет вид прямоугольного параллелепипеда со скошенными углами. Такой брикет получается путём гидравлического прессования, и его размеры зависят от рыхлости сырья, из которого он произведён и давления, которое на него оказано. Они хорошо используются на внутреннем рынке, и также отлично покупаются во все европейские страны.
Технология
Процесс брикетирования – это процесс сжатия материала под высоким давлением, с выделением температуры от силы трения. За счет данного воздействия в древесине происходит выделение лигнина, который является связующим веществом для формирования брикета. Для брикетов не из древесного сырья, могут применяться экологически чистые добавки (не более 2%). При производстве данной продукции следует обратить особое внимание на влагу – очень важный параметр, влияющий на плотность брикета. В случае превышения 14% влажности сырья брикет разваливается на произвольные куски из-за избытка влаги.
Объем брикета составляет 1/10 от объёма затраченного на его производство сырья, что дает значительную экономию при транспортировке и хранении биотоплива.

Читайте также:  Белые орехи

Для производства древесных брикетов применяют поршневые и шнековые прессы, сырье – опилки и стружки. Перед прессованием материал дополнительно измельчают и подсушивают (влажность не должна превышать 12 – 14%)
Поршневой пресс работает циклически – при каждом ходе поршня продавливают определенное количество материала через коническое сопло, на брикетах четко различимы соответствующие цик-лам слои. В приводе всегда применя-ется маховик, позволяющий выровнять нагрузку двигателя. Износ поршня неве-лик, поскольку относительное переме-щение между прессуемым материалом и поршнем мало, быстро изнашивается сопло. Поршневые прессы относительно дешевы и поэтому широко распространены.

Шнековый пресс легче поршневого, поскольку отсутствуют массивные поршни и маховики. Продукция выходит непрерывно, поэтому ее можно разрезать на нужные куски. Плотность выше, чем у поршневых прессов. Шнековые прессы менее шумные, благодаря отсутствию ударных нагрузок. К недостаткам можно отнести больший расход энергии и быстрый износ шнека.

ВОЗМОЖНО ЛИ СДЕЛАТЬ БИОГАЗОВУЮ УСТАНОВКУ СВОИМИ РУКАМИ?

Ответить на этот вопрос можно однозначно – да! В самом деле, смонтировать небольшие установки можно и в домашних условиях. Для отступления скажу, что получение биогаза не является каким-то новым изобретением. Еще в древности биогаз в домашних условиях активно получали в Китае. Эта страна до сих пор является лидером по количеству биогазовых установок. Но вот как сделать биогазовую установку своими руками, что для этого необходимо, сколько это будет стоить – все это постараюсь рассказать в этой и последующих статьях.

ПРЕДВАРИТЕЛЬНЫЙ РАСЧЕТ БИОГАЗОВОЙ УСТАНОВКИ

Прежде чем приступать к покупке или самостоятельной сборке биогазовой установки необходимо адекватно оценить наличие сырья, его тип, качество и возможность бесперебойной поставки. Далеко не каждое сырье подходит для получения биогаза. Сырье, которое не походит:

сырье с высоким содержанием лигнина; сырье, которое содержит опилки хвойных деревьев, (с наличием смол) с влажностью, превышающей 94% гниющий навоз, а также сырье плесенью либо синтетическими моющими веществами.

Если сырье подходит для переработки, то можно приступать к определению объема биореактора. Общий объем сырья для мезофильного режима (температура биомассы колеблется от 25-40 градусов, наиболее распространенный режим) не превышает 2/3 объема реактора. Суточная доза составляет не более 10% от общего загруженного сырья.

Любое сырье характеризуется тремя важными параметрами:

плотность; зольность; влажность.

Последние два параметра определяются из статистических таблиц. Сырье разбавляется водой из учета достижения 80-92% влажности. Отношение количества воды и сырья может колебаться в соотношении от 1:3 и до 2:1. Это делается, чтобы предать субстрату требуемую текучесть. Т.е. чтобы обеспечить проходимость субстрата по трубам и возможность его перемешивания. Для малых биогазовых установок плотность субстрата допускается принимать равной плотности воды.

Попробуем определить объем реактора на примере.

Допустим, хозяйство имеет 10 голов КРС, 20 свиней и 35 кур. В сутки выходит экскрементов: 55 кг от 1 КРС, от 1 свиньи – 4,5 кг и 0,17 кг от курицы. Объем суточных отходов составит: 10х55+20х4,5+0,17х35 = 550+90+5,95 =645,95 кг. Округлим до 646 кг. Влажность экскрементов свиней и КРС составляет 86%, а куриного помета -75%. Чтобы добиться 85% влажности куриного помета необходимо добавить 3,9 л воды (около 4 кг).

Получается, что суточная доза загрузки сырья составит около 650 кг. Полная загрузка реактора: ОС=10х0,65=6,5 тонн, а объем реактора ОР=1,5х6,5=9,75 м³. Т.е. нам понадобится реактор объемом 10 м³.

РАСЧЕТ ВЫХОДА БИОГАЗА

Таблица расчета выхода биогаза в зависимости от типа сырья.

Тип сырья Выход газа, м³ на 1 кг сухого вещества Выход газа м³ на 1 тонну при влажности 85% Навоз КРС 0,25-0,34 38-51,5 Свиной навоз 0,34-0,58 51,5-88 Птичий помет 0,31-0,62 47-94 Конский навоз 0,2-0,3 30,3-45,5 Овечий навоз 0,3-0,62 45,5-94

Если взять все тот же пример, то перемножив вес каждого типа сырья на соответствующие табличные данные и просуммировав все три составляющие, получим выход биогаза равный приблизительно 27-36,5 м³ в сутки.

Для того чтобы сориентироваться в требуемом кол-ве биогаза скажу, что среднестатистической семье из 4 человек для приготовления пищи понадобится 1,8-3,6 м³. Чтобы обогреть помещение в 100 м² – 20 м³ биогаза в сутки.

УСТАНОВКА И ИЗГОТОВЛЕНИЕ РЕАКТОРА

быть водо- и газонепроницаемым. В реакторе недолжно происходить смешивание воздуха с газом. Между крышкой и корпусом должна быть прокладка из герметичного материала; быть теплоизолированным; выдерживать все нагрузки (давление газа, вес и т.д.); иметь люк для проведения ремонтных работ.

Установка и выбор формы реактора производится для каждого хозяйства индивидуально.

Тема изготовления биогазовой установки своими руками очень обширна. Поэтому в этой статье я на этом остановлюсь. В следующей статье поговорим о выборе остальных элементах биогазовой установки, ценах и где ее можно приобрести.

Вся информация по самодельному изготовлению биогазовых установок черпается из различных источников и абсолютно бесплатно будет представлена в заключительной статье.

Гонят из опилок. Что за биотопливо изобрели наши учёные?

Интерес к биотопливу в мире сейчас огромный — его использование неизменно связывают с экологией и охраной окружающей среды. Как правило, производят его из сои, рапса, кукурузы, тростника или других злаков. Делается это путём ферментации биомассы. Собранную сельхозкультуру подвергают брожению с помощью химикатов или бактерий. В итоге образуется этанол и другие виды спиртов или же газообразное топливо.

Однако в последнее время звучат голоса скептиков: дескать, производство биотоплива экологически нецелесообразно, поскольку оно наносит ущерб климату больший, чем тот, которого удаётся избежать за счёт отказа от сжигания ископаемых углеводородов. Причина, в первую очередь, в вырубке лесов под плантации.

В России давно применяется технология производства биомассы (а затем и биотоплива) из отходов лесной промышленности — опилок, стружки, коры, щепы, остатков древесины. Их спрессовывают и получают пеллеты и брикеты, которые затем сжигают в котельных и электрогенераторах. Но у технологии есть ряд недостатков. Например, такая биомасса имеет низкую энергетическую плотность. Учёные из МФТИ и Объединённого института высоких температур РАН предлагают своё решение.

В чём суть метода?

Исследователи подвергают древесную биомассу термической обработке при отсутствии или незначительном содержании кислорода. Печь заполняют спрессованными брикетами из древесных отходов, а сверху засыпают толстым слоем минерального наполнителя. Это может быть специальная глина, тальк или мел. Компоненты химически устойчивы и относительно недороги. Затем реактор нагревают до 200-300°C, и отходы древесины, разлагаясь на более простые молекулы, постепенно превращаются в подобие угля. Приблизительно так в недрах нашей планеты на протяжении миллионов лет из погибших растений формировался каменный и бурый уголь.

«При такой технологии можно получать биотопливо весьма высокого качества, с энергетическими характеристиками близкими к углю, — говорит один из авторов исследования, доктор технических наук Борис Кичатов. — По сути своей метод прост. Для производства не требуется больших капитальных затрат. Это важно для предприятий малого и среднего бизнеса. Установки, использующие подобную технологию, можно размещать в местах, где непосредственно идёт заготовка древесины. В настоящий момент отходы, образующиеся при вырубке лесов (пни, ветви деревьев), как правило, сжигают, а порой просто выбрасывают. В последнем случае они становятся источником для развития болезней и вредителей лесов. Технология, которую мы предлагаем, позволит создавать относительно небольшие производства».

Ещё одно важное достоинство нового вида биотоплива: его сжигание не будет приводить к дополнительным выбросам углекислого газа в атмосферу. Кроме того, технология в качестве побочных продуктов даёт весьма ценные химические соединения. Они пригодятся в других отраслях промышленности.

На что ещё делать ставку?

Несмотря на большие запасы нефти, газа и угля, Россия пытается развивать у себя производство топлива из растительного сырья. В первую очередь, конечно, из отходов всё той же древесины. (Справедливости ради скажем, что обычные дрова — это тоже вид биотоплива).

«У России огромный потенциал для развития этого сектора энергетики, — считает директор ООО „Лесная сертификация“ Павел Трушевский. — По экспертным данным, в стране в том или ином виде образуется до 80 млн кубометров древесного сырья в год. Это порубочные остатки на делянках, древесина, оставленная на корню, щепа, опилки. Поэтому Россия — очень интересный рынок для производства биотоплива. Причём начать стоит с внутреннего рынка. У нас много котельных, которые находятся где-то в лесных районах и при этом работают на дорогом мазуте. Спрашивается, зачем везти туда мазут, если рядом с ними растёт лес? Более дешёвая и экологически чистая энергия, способная создавать рабочие места, валяется у них под ногами».

Например, с угля на древесное биотопливо планируют перевести в ближайшее время Байкальскаую ТЭЦ в Иркутской области. Местные власти подсчитали и поняли, что это будет выгоднее, чем переход на газ. Кстати, биогаз (то есть газ, получаемый в результате брожения биомассы) — второй по перспективам вид биотоплива в нашей стране. Ставку нужно делать на отходы сельского хозяйства, в том числе жизнедеятельности домашних животных — навоз, помёт.

Что касается выращивания рапса, кукурузы или тем более тростника, тут эксперты проявляют сдержанность. К чему создавать новые плантации, если 45% территории России покрыто лесами и их возобновляемый потенциал почти не используется?

В принципе, гнать этиловый спирт много из чего можно, но какова будет цена вопроса? Недавно химики из МГУ предложили технологию получения этанола из грибов. Их в наших лесах тоже видимо-невидимо. Но не нужно быть семи пядей во лбу, чтобы понять: себестоимость такого биотоплива будет куда выше, чем полученного из древесины.

Ссылка на основную публикацию